Faculty of Science University of the Punjab, Lahore Course Outline

Program	m	BSCP	Course Code	СРНҮ 322	Credit Hours	3		
Course Title		Electromagnetic Theory I						
Course Introduction								
The course introduces electromagnetic theory at undergraduate level.								
Learning Outcomes								
 On the completion of the course, the students will: 1. Solve advance problems of electromagnetism. 2. Apply Maxwell's equation to explain various wave phenomena. 3. Solve simple problems of electrodynamics. 4. Introduce covariant form of Maxwell's equations. 								
			Course Content					
Week 1	Introduction of classical electrodynamics and its scope Electrostatics: Coulomb's law, the electric fields							
Week 2	Divergence and curl of electric field Differential form of Gauss's law							
Week 3	The electric flux, The electric potential Electric potential of charge distributions							
Week 4	(Problem Solving) The electric dipole							
Week 5	Multipole expansion Electric potential energy of system of charges							
Week 6	Electric potential energy of a continuous distribution Potential energy stored in the electric field							
Week 7	Poisson's and Laplace's equations Properties of solution of Laplace's equation							
Week 8	Solution of Laplace's equation in 2D Cartesian Solution of Laplace's equation in polar coordinates							
Week 9	(Problem Solving) Electrostatic Field in Dielectric Media							
Week 10	Polarization							
Week 11	Field outside a dielectric medium Electric field inside a dielectric							

	Gauss's law in a dielectric, Electric susceptibility and dielectric constant				
Week 12	Boundary conditions on the field vector at the interface b/w different medium				
	(Problem Solving)				
Week 13	Magnetostatics: Forces on a current carrying system				
	Torque on a loop of wire				
Week 14	Steady current, Equation of continuity.				
	Biot and Savart law and its applications				
Week 15	Divergence and curl of magnetic field				
	Differential form of Ampere's law and Magnetic flux				
Week 16	Magnetic vector potential and Coulomb's gauge				
	Magnetic field of a distant circuit.				
Textbooks and Reading Material					
1. Classical Electrodynamics, Jackson, Wiley (1975).					
2. Foundations of Electromagnetic Theory (4 rd edition), Addison-Wesley (2008).					
 Introduction to Electrodynamics (2ndedition), D. Griffiths, <i>Prentice Hall</i> (1989). Electromagnetic Theory, S. J. Adams, <i>Adams Press</i> (2008). 					

Teaching Learning Strategies

The instructor is required to make use of Mathematica/Maple/Python to teach the concepts through visualization/antimutation and symbolic/numerical calculations. The students are required to solve a large portion of related exercises/questions/problems of the main textbooks.

Assignments: Types and Number with Calendar

At least two assignments and two quizzes. A course project may also be assigned.

Sr. No.	Elements	Weightage	Details
1.	Midterm Assessment	35%	Written Assessment at the mid-point of the semester.
2.	Formative Assessment	25%	Continuous assessment includes: Classroom participation, assignments, presentations, viva voce, attitude and behavior, hands-on-activities, short tests, projects, practical, reflections, readings, quizzes etc.
3.	Final Assessment	40%	Written Examination at the end of the semester. It is mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based on term paper, research proposal development, field work and report writing etc.